36 research outputs found

    Identification of a RAI1-associated disease network through integration of exome sequencing, transcriptomics, and 3D genomics.

    Get PDF
    Smith-Magenis syndrome (SMS) is a developmental disability/multiple congenital anomaly disorder resulting from haploinsufficiency of RAI1. It is characterized by distinctive facial features, brachydactyly, sleep disturbances, and stereotypic behaviors. We investigated a cohort of 15 individuals with a clinical suspicion of SMS who showed neither deletion in the SMS critical region nor damaging variants in RAI1 using whole exome sequencing. A combination of network analysis (co-expression and biomedical text mining), transcriptomics, and circularized chromatin conformation capture (4C-seq) was applied to verify whether modified genes are part of the same disease network as known SMS-causing genes. Potentially deleterious variants were identified in nine of these individuals using whole-exome sequencing. Eight of these changes affect KMT2D, ZEB2, MAP2K2, GLDC, CASK, MECP2, KDM5C, and POGZ, known to be associated with Kabuki syndrome 1, Mowat-Wilson syndrome, cardiofaciocutaneous syndrome, glycine encephalopathy, mental retardation and microcephaly with pontine and cerebellar hypoplasia, X-linked mental retardation 13, X-linked mental retardation Claes-Jensen type, and White-Sutton syndrome, respectively. The ninth individual carries a de novo variant in JAKMIP1, a regulator of neuronal translation that was recently found deleted in a patient with autism spectrum disorder. Analyses of co-expression and biomedical text mining suggest that these pathologies and SMS are part of the same disease network. Further support for this hypothesis was obtained from transcriptome profiling that showed that the expression levels of both Zeb2 and Map2k2 are perturbed in Rai1 (-/-) mice. As an orthogonal approach to potentially contributory disease gene variants, we used chromatin conformation capture to reveal chromatin contacts between RAI1 and the loci flanking ZEB2 and GLDC, as well as between RAI1 and human orthologs of the genes that show perturbed expression in our Rai1 (-/-) mouse model. These holistic studies of RAI1 and its interactions allow insights into SMS and other disorders associated with intellectual disability and behavioral abnormalities. Our findings support a pan-genomic approach to the molecular diagnosis of a distinctive disorder

    Biallelic variants in ADAMTS15 cause a novel form of distal arthrogryposis

    Get PDF
    Purpose We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. Methods Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. Results We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. Conclusion In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome

    Biallelic mutations in IRF8 impair human NK cell maturation and function

    Get PDF
    Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense

    Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder.

    Get PDF
    NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development

    De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder

    Get PDF
    DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder

    Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy

    Get PDF
    The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy (DEE) and severe neurodevelopmental disorders (NDDs). Exome sequencing and family-based rare variant analyses on a cohort with NDD identified two siblings with DEE and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar DEE phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and cerebrospinal fluid of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for DEE and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis

    Mutation in the intracellular chloride channel CLCC1 associated with autosomal recessive retinitis pigmentosa

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: Exome and genome .vcf files and SNP array data are available from Dryad Digital Repository: https://doi.org/10.5061/dryad.3vv31qqWe identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells

    Human genome meeting 2016 : Houston, TX, USA. 28 February - 2 March 2016

    Get PDF
    : O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents R. Polimanti, J. Gelernter O3 Effects of prenatal environment, genotype and DNA methylation on birth weight and subsequent postnatal outcomes: findings from GUSTO, an Asian birth cohort X. Lin, I. Y. Lim, Y. Wu, A. L. Teh, L. Chen, I. M. Aris, S. E. Soh, M. T. Tint, J. L. MacIsaac, F. Yap, K. Kwek, S. M. Saw, M. S. Kobor, M. J. Meaney, K. M. Godfrey, Y. S. Chong, J. D. Holbrook, Y. S. Lee, P. D. Gluckman, N. Karnani, GUSTO study group O4 High-throughput identification of specific qt interval modulating enhancers at the SCN5A locus A. Kapoor, D. Lee, A. Chakravarti O5 Identification of extracellular matrix components inducing cancer cell migration in the supernatant of cultivated mesenchymal stem cells C. Maercker, F. Graf, M. Boutros O6 Single cell allele specific expression (ASE) IN T21 and common trisomies: a novel approach to understand DOWN syndrome and other aneuploidies G. Stamoulis, F. Santoni, P. Makrythanasis, A. Letourneau, M. Guipponi, N. Panousis, M. Garieri, P. Ribaux, E. Falconnet, C. Borel, S. E. Antonarakis O7 Role of microRNA in LCL to IPSC reprogramming S. Kumar, J. Curran, J. Blangero O8 Multiple enhancer variants disrupt gene regulatory network in Hirschsprung disease S. Chatterjee, A. Kapoor, J. Akiyama, D. Auer, C. Berrios, L. Pennacchio, A. Chakravarti O9 Metabolomic profiling for the diagnosis of neurometabolic disorders T. R. Donti, G. Cappuccio, M. Miller, P. Atwal, A. Kennedy, A. Cardon, C. Bacino, L. Emrick, J. Hertecant, F. Baumer, B. Porter, M. Bainbridge, P. Bonnen, B. Graham, R. Sutton, Q. Sun, S. Elsea O10 A novel causal methylation network approach to Alzheimer’s disease Z. Hu, P. Wang, Y. Zhu, J. Zhao, M. Xiong, David A Bennett O11 A microRNA signature identifies subtypes of triple-negative breast cancer and reveals MIR-342-3P as regulator of a lactate metabolic pathway A. Hidalgo-Miranda, S. Romero-Cordoba, S. Rodriguez-Cuevas, R. Rebollar-Vega, E. Tagliabue, M. Iorio, E. D’Ippolito, S. Baroni O12 Transcriptome analysis identifies genes, enhancer RNAs and repetitive elements that are recurrently deregulated across multiple cancer types B. Kaczkowski, Y. Tanaka, H. Kawaji, A. Sandelin, R. Andersson, M. Itoh, T. Lassmann, the FANTOM5 consortium, Y. Hayashizaki, P. Carninci, A. R. R. Forrest O13 Elevated mutation and widespread loss of constraint at regulatory and architectural binding sites across 11 tumour types C. A. Semple O14 Exome sequencing provides evidence of pathogenicity for genes implicated in colorectal cancer E. A. Rosenthal, B. Shirts, L. Amendola, C. Gallego, M. Horike-Pyne, A. Burt, P. Robertson, P. Beyers, C. Nefcy, D. Veenstra, F. Hisama, R. Bennett, M. Dorschner, D. Nickerson, J. Smith, K. Patterson, D. Crosslin, R. Nassir, N. Zubair, T. Harrison, U. Peters, G. Jarvik, NHLBI GO Exome Sequencing Project O15 The tandem duplicator phenotype as a distinct genomic configuration in cancer F. Menghi, K. Inaki, X. Woo, P. Kumar, K. Grzeda, A. Malhotra, H. Kim, D. Ucar, P. Shreckengast, K. Karuturi, J. Keck, J. Chuang, E. T. Liu O16 Modeling genetic interactions associated with molecular subtypes of breast cancer B. Ji, A. Tyler, G. Ananda, G. Carter O17 Recurrent somatic mutation in the MYC associated factor X in brain tumors H. Nikbakht, M. Montagne, M. Zeinieh, A. Harutyunyan, M. Mcconechy, N. Jabado, P. Lavigne, J. Majewski O18 Predictive biomarkers to metastatic pancreatic cancer treatment J. B. Goldstein, M. Overman, G. Varadhachary, R. Shroff, R. Wolff, M. Javle, A. Futreal, D. Fogelman O19 DDIT4 gene expression as a prognostic marker in several malignant tumors L. Bravo, W. Fajardo, H. Gomez, C. Castaneda, C. Rolfo, J. A. Pinto O20 Spatial organization of the genome and genomic alterations in human cancers K. C. Akdemir, L. Chin, A. Futreal, ICGC PCAWG Structural Alterations Group O21 Landscape of targeted therapies in solid tumors S. Patterson, C. Statz, S. Mockus O22 Genomic analysis reveals novel drivers and progression pathways in skin basal cell carcinoma S. N. Nikolaev, X. I. Bonilla, L. Parmentier, B. King, F. Bezrukov, G. Kaya, V. Zoete, V. Seplyarskiy, H. Sharpe, T. McKee, A. Letourneau, P. Ribaux, K. Popadin, N. Basset-Seguin, R. Ben Chaabene, F. Santoni, M. Andrianova, M. Guipponi, M. Garieri, C. Verdan, K. Grosdemange, O. Sumara, M. Eilers, I. Aifantis, O. Michielin, F. de Sauvage, S. Antonarakis O23 Identification of differential biomarkers of hepatocellular carcinoma and cholangiocarcinoma via transcriptome microarray meta-analysis S. Likhitrattanapisal O24 Clinical validity and actionability of multigene tests for hereditary cancers in a large multi-center study S. Lincoln, A. Kurian, A. Desmond, S. Yang, Y. Kobayashi, J. Ford, L. Ellisen O25 Correlation with tumor ploidy status is essential for correct determination of genome-wide copy number changes by SNP array T. L. Peters, K. R. Alvarez, E. F. Hollingsworth, D. H. Lopez-Terrada O26 Nanochannel based next-generation mapping for interrogation of clinically relevant structural variation A. Hastie, Z. Dzakula, A. W. Pang, E. T. Lam, T. Anantharaman, M. Saghbini, H. Cao, BioNano Genomics O27 Mutation spectrum in a pulmonary arterial hypertension (PAH) cohort and identification of associated truncating mutations in TBX4 C. Gonzaga-Jauregui, L. Ma, A. King, E. Berman Rosenzweig, U. Krishnan, J. G. Reid, J. D. Overton, F. Dewey, W. K. Chung O28 NORTH CAROLINA macular dystrophy (MCDR1): mutations found affecting PRDM13 K. Small, A. DeLuca, F. Cremers, R. A. Lewis, V. Puech, B. Bakall, R. Silva-Garcia, K. Rohrschneider, M. Leys, F. S. Shaya, E. Stone O29 PhenoDB and genematcher, solving unsolved whole exome sequencing data N. L. Sobreira, F. Schiettecatte, H. Ling, E. Pugh, D. Witmer, K. Hetrick, P. Zhang, K. Doheny, D. Valle, A. Hamosh O30 Baylor-Johns Hopkins Center for Mendelian genomics: a four year review S. N. Jhangiani, Z. Coban Akdemir, M. N. Bainbridge, W. Charng, W. Wiszniewski, T. Gambin, E. Karaca, Y. Bayram, M. K. Eldomery, J. Posey, H. Doddapaneni, J. Hu, V. R. Sutton, D. M. Muzny, E. A. Boerwinkle, D. Valle, J. R. Lupski, R. A. Gibbs O31 Using read overlap assembly to accurately identify structural genetic differences in an ashkenazi jewish trio S. Shekar, W. Salerno, A. English, A. Mangubat, J. Bruestle O32 Legal interoperability: a sine qua non for international data sharing A. Thorogood, B. M. Knoppers, Global Alliance for Genomics and Health - Regulatory and Ethics Working Group O33 High throughput screening platform of competent sineups: that can enhance translation activities of therapeutic target H. Takahashi, K. R. Nitta, A. Kozhuharova, A. M. Suzuki, H. Sharma, D. Cotella, C. Santoro, S. Zucchelli, S. Gustincich, P. Carninci O34 The undiagnosed diseases network international (UDNI): clinical and laboratory research to meet patient needs J. J. Mulvihill, G. Baynam, W. Gahl, S. C. Groft, K. Kosaki, P. Lasko, B. Melegh, D. Taruscio O36 Performance of computational algorithms in pathogenicity predictions for activating variants in oncogenes versus loss of function mutations in tumor suppressor genes R. Ghosh, S. Plon O37 Identification and electronic health record incorporation of clinically actionable pharmacogenomic variants using prospective targeted sequencing S. Scherer, X. Qin, R. Sanghvi, K. Walker, T. Chiang, D. Muzny, L. Wang, J. Black, E. Boerwinkle, R. Weinshilboum, R. Gibbs O38 Melanoma reprogramming state correlates with response to CTLA-4 blockade in metastatic melanoma T. Karpinets, T. Calderone, K. Wani, X. Yu, C. Creasy, C. Haymaker, M. Forget, V. Nanda, J. Roszik, J. Wargo, L. Haydu, X. Song, A. Lazar, J. Gershenwald, M. Davies, C. Bernatchez, J. Zhang, A. Futreal, S. Woodman O39 Data-driven refinement of complex disease classification from integration of heterogeneous functional genomics data in GeneWeaver E. J. Chesler, T. Reynolds, J. A. Bubier, C. Phillips, M. A. Langston, E. J. Baker O40 A general statistic framework for genome-based disease risk prediction M. Xiong, L. Ma, N. Lin, C. Amos O41 Integrative large-scale causal network analysis of imaging and genomic data and its application in schizophrenia studies N. Lin, P. Wang, Y. Zhu, J. Zhao, V. Calhoun, M. Xiong O42 Big data and NGS data analysis: the cloud to the rescue O. Dobretsberger, M. Egger, F. Leimgruber O43 Cpipe: a convergent clinical exome pipeline specialised for targeted sequencing S. Sadedin, A. Oshlack, Melbourne Genomics Health Alliance O44 A Bayesian classification of biomedical images using feature extraction from deep neural networks implemented on lung cancer data V. A. A. Antonio, N. Ono, Clark Kendrick C. Go O45 MAV-SEQ: an interactive platform for the Management, Analysis, and Visualization of sequence data Z. Ahmed, M. Bolisetty, S. Zeeshan, E. Anguiano, D. Ucar O47 Allele specific enhancer in EPAS1 intronic regions may contribute to high altitude adaptation of Tibetans C. Zeng, J. Shao O48 Nanochannel based next-generation mapping for structural variation detection and comparison in trios and populations H. Cao, A. Hastie, A. W. Pang, E. T. Lam, T. Liang, K. Pham, M. Saghbini, Z. Dzakula O49 Archaic introgression in indigenous populations of Malaysia revealed by whole genome sequencing Y. Chee-Wei, L. Dongsheng, W. Lai-Ping, D. Lian, R. O. Twee Hee, Y. Yunus, F. Aghakhanian, S. S. Mokhtar, C. V. Lok-Yung, J. Bhak, M. Phipps, X. Shuhua, T. Yik-Ying, V. Kumar, H. Boon-Peng O50 Breast and ovarian cancer prevention: is it time for population-based mutation screening of high risk genes? I. Campbell, M.-A. Young, P. James, Lifepool O53 Comprehensive coverage from low DNA input using novel NGS library preparation methods for WGS and WGBS C. Schumacher, S. Sandhu, T. Harkins, V. Makarov O54 Methods for large scale construction of robust PCR-free libraries for sequencing on Illumina HiSeqX platform H. DoddapaneniR. Glenn, Z. Momin, B. Dilrukshi, H. Chao, Q. Meng, B. Gudenkauf, R. Kshitij, J. Jayaseelan, C. Nessner, S. Lee, K. Blankenberg, L. Lewis, J. Hu, Y. Han, H. Dinh, S. Jireh, K. Walker, E. Boerwinkle, D. Muzny, R. Gibbs O55 Rapid capture methods for clinical sequencing J. Hu, K. Walker, C. Buhay, X. Liu, Q. Wang, R. Sanghvi, H. Doddapaneni, Y. Ding, N. Veeraraghavan, Y. Yang, E. Boerwinkle, A. L. Beaudet, C. M. Eng, D. M. Muzny, R. A. Gibbs O56 A diploid personal human genome model for better genomes from diverse sequence data K. C. C. Worley, Y. Liu, D. S. T. Hughes, S. C. Murali, R. A. Harris, A. C. English, X. Qin, O. A. Hampton, P. Larsen, C. Beck, Y. Han, M. Wang, H. Doddapaneni, C. L. Kovar, W. J. Salerno, A. Yoder, S. Richards, J. Rogers, J. R. Lupski, D. M. Muzny, R. A. Gibbs O57 Development of PacBio long range capture for detection of pathogenic structural variants Q. Meng, M. Bainbridge, M. Wang, H. Doddapaneni, Y. Han, D. Muzny, R. Gibbs O58 Rhesus macaques exhibit more non-synonymous variation but greater impact of purifying selection than humans R. A. Harris, M. Raveenedran, C. Xue, M. Dahdouli, L. Cox, G. Fan, B. Ferguson, J. Hovarth, Z. Johnson, S. Kanthaswamy, M. Kubisch, M. Platt, D. Smith, E. Vallender, R. Wiseman, X. Liu, J. Below, D. Muzny, R. Gibbs, F. Yu, J. Rogers O59 Assessing RNA structure disruption induced by single-nucleotide variation J. Lin, Y. Zhang, Z. Ouyang P1 A meta-analysis of genome-wide association studies of mitochondrial dna copy number A. Moore, Z. Wang, J. Hofmann, M. Purdue, R. Stolzenberg-Solomon, S. Weinstein, D. Albanes, C.-S. Liu, W.-L. Cheng, T.-T. Lin, Q. Lan, N. Rothman, S. Berndt P2 Missense polymorphic genetic combinations underlying down syndrome susceptibility E. S. Chen P4 The evaluation of alteration of ELAM-1 expression in the endometriosis patients H. Bahrami, A. Khoshzaban, S. Heidari Keshal P5 Obesity and the incidence of apolipoprotein E polymorphisms in an assorted population from Saudi Arabia population K. K. R. Alharbi P6 Genome-associated personalized antithrombotical therapy for patients with high risk of thrombosis and bleeding M. Zhalbinova, A. Akilzhanova, S. Rakhimova, M. Bekbosynova, S. Myrzakhmetova P7 Frequency of Xmn1 polymorphism among sickle cell carrier cases in UAE population M. Matar P8 Differentiating inflammatory bowel diseases by using genomic data: dimension of the problem and network organization N. Mili, R. Molinari, Y. Ma, S. Guerrier P9 Vulnerability of genetic variants to the risk of autism among Saudi children N. Elhawary, M. Tayeb, N. Bogari, N. Qotb P10 Chromatin profiles from ex vivo purified dopaminergic neurons establish a promising model to support studies of neurological function and dysfunction S. A. McClymont, P. W. Hook, L. A. Goff, A. McCallion P11 Utilization of a sensitized chemical mutagenesis screen to identify genetic modifiers of retinal dysplasia in homozygous Nr2e3rd7 mice Y. Kong, J. R. Charette, W. L. Hicks, J. K. Naggert, L. Zhao, P. M. Nishina P12 Ion torrent next generation sequencing of recessive polycystic kidney disease in Saudi patients B. M. Edrees, M. Athar, F. A. Al-Allaf, M. M. Taher, W. Khan, A. Bouazzaoui, N. A. Harbi, R. Safar, H. Al-Edressi, A. Anazi, N. Altayeb, M. A. Ahmed, K. Alansary, Z. Abduljaleel P13 Digital expression profiling of Purkinje neurons and dendrites in different subcellular compartments A. Kratz, P. Beguin, S. Poulain, M. Kaneko, C. Takahiko, A. Matsunaga, S. Kato, A. M. Suzuki, N. Bertin, T. Lassmann, R. Vigot, P. Carninci, C. Plessy, T. Launey P14 The evolution of imperfection and imperfection of evolution: the functional and functionless fractions of the human genome D. Graur P16 Species-independent identification of known and novel recurrent genomic entities in multiple cancer patients J. Friis-Nielsen, J. M. Izarzugaza, S. Brunak P18 Discovery of active gene modules which are densely conserved across multiple cancer types reveal their prognostic power and mutually exclusive mutation patterns B. S. Soibam P19 Whole exome sequencing of dysplastic leukoplakia tissue indicates sequential accumulation of somatic mutations from oral precancer to cancer D. Das, N. Biswas, S. Das, S. Sarkar, A. Maitra, C. Panda, P. Majumder P21 Epigenetic mechanisms of carcinogensis by hereditary breast cancer genes J. J. Gruber, N. Jaeger, M. Snyder P22 RNA direct: a novel RNA enrichment strategy applied to transcripts associated with solid tumors K. Patel, S. Bowman, T. Davis, D. Kraushaar, A. Emerman, S. Russello, N. Henig, C. Hendrickson P23 RNA sequencing identifies gene mutations for neuroblastoma K. Zhang P24 Participation of SFRP1 in the modulation of TMPRSS2-ERG fusion gene in prostate cancer cell lines M. Rodriguez-Dorantes, C. D. Cruz-Hernandez, C. D. P. Garcia-Tobilla, S. Solorzano-Rosales P25 Targeted Methylation Sequencing of Prostate Cancer N. Jäger, J. Chen, R. Haile, M. Hitchins, J. D. Brooks, M. Snyder P26 Mutant TPMT alleles in children with acute lymphoblastic leukemia from México City and Yucatán, Mexico S. Jiménez-Morales, M. Ramírez, J. Nuñez, V. Bekker, Y. Leal, E. Jiménez, A. Medina, A. Hidalgo, J. Mejía P28 Genetic modifiers of Alström syndrome J. Naggert, G. B. Collin, K. DeMauro, R. Hanusek, P. M. Nishina P31 Association of genomic variants with the occurrence of angiotensin-converting-enzyme inhibitor (ACEI)-induced coughing among Filipinos E. M. Cutiongco De La Paz, R. Sy, J. Nevado, P. Reganit, L. Santos, J. D. Magno, F. E. Punzalan , D. Ona , E. Llanes, R. L. Santos-Cortes , R. Tiongco, J. Aherrera, L. Abrahan, P. Pagauitan-Alan; Philippine Cardiogenomics Study Group P32 The use of “humanized” mouse models to validate disease association of a de novo GARS variant and to test a novel gene therapy strategy for Charcot-Marie-Tooth disease type 2D K. H. Morelli, J. S. Domire, N. Pyne, S. Harper, R. Burgess P34 Molecular regulation of chondrogenic human induced pluripotent stem cells M. A. Gari, A. Dallol, H. Alsehli, A. Gari, M. Gari, A. Abuzenadah P35 Molecular profiling of hematologic malignancies: implementation of a variant assessment algorithm for next generation sequencing data analysis and clinical reporting M. Thomas, M. Sukhai, S. Garg, M. Misyura, T. Zhang, A. Schuh, T. Stockley, S. Kamel-Reid P36 Accessing genomic evidence for clinical variants at NCBI S. Sherry, C. Xiao, D. Slotta, K. Rodarmer, M. Feolo, M. Kimelman, G. Godynskiy, C. O’Sullivan, E. Yaschenko P37 NGS-SWIFT: a cloud-based variant analysis framework using control-accessed sequencing data from DBGAP/SRA C. Xiao, E. Yaschenko, S. Sherry P38 Computational assessment of drug induced hepatotoxicity through gene expression profiling C. Rangel-Escareño, H. Rueda-Zarate P40 Flowr: robust and efficient pipelines using a simple language-agnostic approach;ultraseq; fast modular pipeline for somatic variation calling using flowr S. Seth, S. Amin, X. Song, X. Mao, H. Sun, R. G. Verhaak, A. Futreal, J. Zhang P41 Applying “Big data” technologies to the rapid analysis of heterogenous large cohort data S. J. Whiite, T. Chiang, A. English, J. Farek, Z. Kahn, W. Salerno, N. Veeraraghavan, E. Boerwinkle, R. Gibbs P42 FANTOM5 web resource for the large-scale genome-wide transcription start site activity profiles of wide-range of mammalian cells T. Kasukawa, M. Lizio, J. Harshbarger, S. Hisashi, J. Severin, A. Imad, S. Sahin, T. C. Freeman, K. Baillie, A. Sandelin, P. Carninci, A. R. R. Forrest, H. Kawaji, The FANTOM Consortium P43 Rapid and scalable typing of structural variants for disease cohorts W. Salerno, A. English, S. N. Shekar, A. Mangubat, J. Bruestle, E. Boerwinkle, R. A. Gibbs P44 Polymorphism of glutathione S-transferases and sulphotransferases genes in an Arab population A. H. Salem, M. Ali, A. Ibrahim, M. Ibrahim P46 Genetic divergence of CYP3A5*3 pharmacogenomic marker for native and admixed Mexican populations J. C. Fernandez-Lopez, V. Bonifaz-Peña, C. Rangel-Escareño, A. Hidalgo-Miranda, A. V. Contreras P47 Whole exome sequence meta-analysis of 13 white blood cell, red blood cell, and platelet traits L. Polfus, CHARGE and NHLBI Exome Sequence Project Working Groups P48 Association of adipoq gene with type 2 diabetes and related phenotypes in african american men and women: The jackson heart study S. Davis, R. Xu, S. Gebeab, P Riestra, A Gaye, R. Khan, J. Wilson, A. Bidulescu P49 Common variants in casr gene are associated with serum calcium levels in koreans S. H. Jung, N. Vinayagamoorthy, S. H. Yim, Y. J. Chung P50 Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with multiple exponential functions Y. Zhou, S. Xu P51 A Bayesian framework for generalized linear mixed models in genome-wide association studies X. Wang, V. Philip, G. Carter P52 Targeted sequencing approach for the identification of the genetic causes of hereditary hearing impairment A. A. Abuzenadah, M. Gari, R. Turki, A. Dallol P53 Identification of enhancer sequences by ATAC-seq open chromatin profiling A. Uyar, A. Kaygun, S. Zaman, E. Marquez, J. George, D. Ucar P54 Direct enrichment for the rapid preparation of targeted NGS libraries C. L. Hendrickson, A. Emerman, D. Kraushaar, S. Bowman, N. Henig, T. Davis, S. Russello, K. Patel P56 Performance of the Agilent D5000 and High Sensitivity D5000 ScreenTape assays for the Agilent 4200 Tapestation System R. Nitsche, L. Prieto-Lafuente P57 ClinVar: a multi-source archive for variant interpretation M. Landrum, J. Lee, W. Rubinstein, D. Maglott P59 Association of functional variants and protein physical interactions of human MUTY homolog linked with familial adenomatous polyposis and colorectal cancer syndrome Z. Abduljaleel, W. Khan, F. A. Al-Allaf, M. Athar , M. M. Taher, N. Shahzad P60 Modification of the microbiom constitution in the gut using chicken IgY antibodies resulted in a reduction of acute graft-versus-host disease after experimental bone marrow transplantation A. Bouazzaoui, E. Huber, A. Dan, F. A. Al-Allaf, W. Herr, G. Sprotte, J. Köstler, A. Hiergeist, A. Gessner, R. Andreesen, E. Holler P61 Compound heterozygous mutation in the LDLR gene in Saudi patients suffering severe hypercholesterolemia F. Al-Allaf, A. Alashwal, Z. Abduljaleel, M. Taher, A. Bouazzaoui, H. Abalkhail, A. Al-Allaf, R. Bamardadh, M. Atha

    Biallelic variants in the ectonucleotidase ENTPD1 cause a complex neurodevelopmental disorder with intellectual disability, distinct white matter abnormalities, and spastic paraplegia.

    Get PDF
    OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia (HSP) is associated with over 80 genes with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (MIM# 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterizations were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described: c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs* 18), c.640del; p.(Gly216Glufs* 75), c.185T>G; p.(Leu62*), c.1531T>C; p.(*511Glnext* 100), c.967C>T; p.(Gln323*), c.414-2_414-1del, and c.146 A>G; p.(Tyr49Cys) including four recurrent variants c.1109T>A; p.(Leu370* ), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include: childhood-onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrates ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease-onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1: i) expands previously described features of ENTPD1-related neurological disease, ii) highlights the importance of genotype-driven deep phenotyping, iii) documents the need for global collaborative efforts to characterize rare AR disease traits, and iv) provides insights into the disease trait neurobiology. This article is protected by copyright. All rights reserved

    Phenotypic expansion illuminates multilocus pathogenic variation

    No full text
    PubMedID: 29790871Purpose: Multilocus variation—pathogenic variants in two or more disease genes—can potentially explain the underlying genetic basis for apparent phenotypic expansion in cases for which the observed clinical features extend beyond those reported in association with a “known” disease gene. Methods: Analyses focused on 106 patients, 19 for whom apparent phenotypic expansion was previously attributed to variation at known disease genes. We performed a retrospective computational reanalysis of whole-exome sequencing data using stringent Variant Call File filtering criteria to determine whether molecular diagnoses involving additional disease loci might explain the observed expanded phenotypes. Results: Multilocus variation was identified in 31.6% (6/19) of families with phenotypic expansion and 2.3% (2/87) without phenotypic expansion. Intrafamilial clinical variability within two families was explained by multilocus variation identified in the more severely affected sibling. Conclusion: Our findings underscore the role of multiple rare variants at different loci in the etiology of genetically and clinically heterogeneous cohorts. Intrafamilial phenotypic and genotypic variability allowed a dissection of genotype–phenotype relationships in two families. Our data emphasize the critical role of the clinician in diagnostic genomic analyses and demonstrate that apparent phenotypic expansion may represent blended phenotypes resulting from pathogenic variation at more than one locus. © 2018, American College of Medical Genetics and Genomics.National Heart, Lung, and Blood Institute National Human Genome Research Institute: UM1 HG006542 R01 NS058529, R35 NS105078 K08 HG008986 National Institute of Neurological Disorders and Stroke: U54-HG003273J.E.P. was supported by a Chao Physician-Scientist Award through the Ting Tsung and Wei Fong Chao Foundation and K08 HG008986 through the National Human Genome Research Institute. This work was supported in part by grants UM1 HG006542 (J.R.L.) from the National Human Genome Research Institute/National Heart, Lung, and Blood Institute to the Baylor Hopkins Center for Mendelian Genomics, R01 NS058529 and R35 NS105078 (J.R.L.) from the National Institute of Neurological Disorders and Stroke, and U54-HG003273 (R.A.G.) from the National Human Genome Research Institute
    corecore